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ABSTRACT 

An improved model is developed for predicting the shape of an electric a r c  balanced 
The improvement over the previous model in transverse convective and magnetic fields. 

is in the more accurate description of the external flow field. The techniques used a r e  
based on conformal mapping and a r e  an extension of those methods developed for prob- 
lems of free surface flows. 
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SHAPE OF A MAGNETICALLY BALANCED ARC 

by M a r v i n  E. Goldstein and Wi l l i s  H. B r a u n  

Lewis Research Center 

SUMMARY 

An improved model is developed for predicting the shape of an electric arc balanced 
in transverse convective and magnetic fields. The improvement over the previous model 
is in the more accurate description of the external flow field. The techniques used are 
based on conformal mapping and a r e  an extension of those methods developed for prob- 
lems of free surface flows. 

INT ROD UCTl ON 

The importance of electric arcs interacting with transverse convective and magnetic 
fields has greatly increased during the last decade because of numerous applications of 
electric a r c  devices to aerospace technology (ref. 1). 
that have been used to study this threefold interaction are (1) the so-called rail accelera- 
tor in which the a r c  moves through a quiescent fluid and (2) the magnetically balanced a r c  
that is discussed herein (see fig. 1). In this type, a magnetic field perpendicular to both 
a channel flow and an electric field is adjusted so  that the electromagnetic force j x B 
acting on the a r c  just balances the hydrodynamic forces. The experiments show that this 
type of arc tends to behave much like a cylindrical solid body (ref. 1). 

mined, was proposed in reference 2. That paper pointed out that some of the features of 
the model were expected to be inaccurate in detail but that the type of analysis employed 
was expected to be correct. In the present report, the arc model described in refer- 
ence 2 is improved by eliminating some of the inaccuracies concerned with the external 
flaw about the arc ,  although the same model for the internal structure of the a r c  is re- 
tained. 

Those features of the model presented in reference 2 that are used herein are the 
assumptions that the hot fluid recirculates within the a rc  column while the cold external 
fluid flows around the column, much as it would flow about a solid body; and, further- 

The two types of configurations 

- - e  

A simple model, from which the cross-sectional shape of the a r c  could be deter- 



Wake \-- 

Figure 1. - A r c  configuration. \y 

more, the arc can be considered two-dimensional (all variations occur in the x, y-plane 
shown in fig. 1); the current density j is uniform across  the a r c  cross section, and Hall 
currents can be neglected. Under these conditions, the magnetic force per unit volume 
is constant and equal to :jB, where f is the unit vector in the direction opposite to the 
upstream velocity (as shown in fig. 1). Now TjB is a conservative force and, hence, can 
be balanced by a pressure gradient. Reference 2 also assumed that both inertial and 
viscous forces could be neglected within the arc. With these approximations, the mo- 
mentum equation for the hot fluid within the a rc  is 

vPi = 1jB 

where pi is the pressure within the arc. The external flow was taken to be inviscid and 
incompressible. (Most experiments were carried out at sufficiently low velocities so  that 
compressibility effects were not important). The purpose of the present analysis is to 
find the shape of the a r c  that will make the external potential flow compatible with the so- 
lutions to equation (1) within the arc. (The matching conditions are discussed in the next 
section.) At this point, it is desirable to deviate from the analysis given in reference 2. 
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The model for the potential flow given in reference 2, although it satisfied the appropri- 
ate matching conditions along the surface of the arc, had several serious drawbacks. 
First, the arc turned out to be a semi-infinite body that had to be artificially truncated. 
Second, the streamlines gradually converged at large distances from the arc instead of 
becoming parallel. Third, the model did not take into account the wake region behind the 
arc. Fourth, the model differed from the experimental situation in that it did not take 
into account the presence of channel walls that could have a large effect on the wake re- 
gion, even if the walls are quite f a r  apart. In the present model, all these drawbacks are 
eliminated. 
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Pi 

PO 
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TI 
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cross-sectional area of a r c  

lg I 
magnetic flux density vector 

channel width 

longest dimension of arc in direction parallel to flow 

distance between stagnation point and point at upstream infinity in t-plane 

total current in arc 

unit vector in direction opposite 

13 1 
arc current density vector 

to upstream velocity 

half the longest dimension of arc in direction perpendicular to flow 

pressure in external flow 

pressure in arc 

stagnation pressure 

Re (t) 

distance from stagnation point measured along boundary streamline of arc 

intermediate complex variable 

complex coordinate of point I in T-plane 

intermediate complex variable 

x-component of velocity of external flow 
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X 

xf 

xS 

Yf 

YS 

Y 

Z 

Zf 

=S 

B 
r 
E 
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e 
x 
P 
r 

Qi 

*O 

4 

magnitude of velocity of external flow, 141 
magnitude of velocity of external flow on boundary streamline of wake 

magnitude of velocity of external flow on boundary streamline of arc, l<(s) I 
magnitude of velocity far upstream of arc, I<(ih) I 
y-component of velocity of external flow 

complex potential, Qi + i* 
coordinate perpendicular to flow and parallel to magnetic field 

x-coordinate of boundary streamline of wake 

x-coordinate of boundary streamline of arc 

coordinate in direction opposite to flow 

y-coordinate of boundary streamline of wake 

y-coordinate of boundary streamline of a r c  

complex variable, x + iy 

Xf + iYf 

xs + iYs 

included angle between two tangents to arc surface at stagnation point divided by T 

interior of first quadrant of t-plane 

convergence factor 

complex conjugate velocity, u - iv = dW/dz 

Re (W 
positive real number 

density of external flow 

kfl (Q) 

velocity potential 

angle between tangent to surface of arc and negative y-axis 

stream function 

VmD/2rh 2 
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N asymptotically proportional to 

Super scripts: 

- arc 

* complex conjugate 

AN A LY S I S 

Boundary Conditions on Velocity 

Under the assumptions just discussed and from the integration of equation (l), the 
pressure pi at any point with coordinates x, y (fig. 1) lying within the arc is given by 

that is, the pressure in the arc is independent of x. This varying pressure in the arc 
must be balanced at the surface of the arc by the pressure field created by the external 
flow, and the a rc  surface must correspond to a streamline of the external flow. The dis- 
tance measured along this bounding streamline (the arcs BA or BC in fig. 2) is denoted 
by st and the magnitude of the velocity of the external flow along this streamline by Vs. 
Since the external flow was assumed to be incompressible and inviscid, Euler's equation 
along this streamline becomes 

- - 

ap -pvs - - - 
as? as t 

Now, since the internal and external pressure must balance along this bounding 
streamline, 

(3) 
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-Arc  surface ----I 
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Figure 2. - Z-plane. 

so that using equation (2) results in 

= jB - aY = -jB COS qI 
as t (5) 

where q~ is the angle between the tangent to the boundary streamline and the negative 
y-axis as shown in figure 2. Substituting equation (5) into equation (3) yields 

(6) 
= jB cos q d s  t PVS dVs 

where dVs is understood to be the change in Vs along s t . 
Behind the arc is a wake. The temperature in the arc is very high. The fluid tem- 

Since the perature in the wake is also high, but is somewhat cooler than that in the arc. 
electrical conductivity of the fluids of interest for arc experiments (argon, air, etc. ) 
drops rapidly to zero at a certain temperature and since the temperature must eventually 
drop off behind the arc, there will be a line on one side of which the fluid will be conduct- 
ing and on the other side of which it will be nonconducting. This line is defined as the 
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front boundary of the wake. Its location will be determined by the calculation; it is only 
necessary to assume that such a line exists. Thus the fluid in the wake is nonconducting 
so that the pressure acting on it is caused by only hydrodynamic forces. But this fluid is 
very hot (ref. l), and therefore its density and the inertial forces are very low. Hence, 
to a very good approximation, the pressure is constant in the wake. The bounding stream- 
lines of this wake must begin at the end points of the arc boundary C and A (i. e., they 
must be continuations of the bounding streamlines of the arc) and extend to -m, as shown 
in figure 2. Along these streamlines, the pressure on both sides must balance so that the 
pressure in the external flaw is a constant along the streamlines c'ii and AH bounding 
the wake. Therefore, from Euler's equation, the magnitude of the velocity of the external 
flow is constant along these streamlines. This constant velocity is denoted by Vo, and 
the arc is assumed to be situated in a channel whose walls are separated by the distance 
D. In the final formulas, taking the limit D 6 03 will include the case where the arc is 
situated in an unbounded parallel flow. The boundary condition for the velocity along the 
channel walls is determined from the fact that it must be in the -y-direction, as must the 
velocity along the stagnation streamline G (c. f .  , fig. 2). 

Boundary Conditions on Stream Function 

In order to completely determine the problem, it is sufficient to specify the values 
of the stream function !P along the boundaries of the flow or  equivalently along the bound- 
aries of half the flow, since it is symmetric with respect to the y-axis. To specify these 
values requires that the bounding streamline of the arc BC be a continuation of the stag- 
nation streamline E and that the bounding streamline of the wake c"H be a continuation 
of the arc BC. Thus, iP  = 0 on IB, BC, and CH. In addition, the channel wall corre- 
sponds to a streamline, or Q is constant along the channel wall E. 

- 
n n n  n 

Calculation of Stream Function 

The problem is now completely specified, and its solution is obtained by conformally 
mapping the complex potential W defined by 

where + is the velocity potential, and the complex conjugate velocity < which is defined by 

where z = x + iy, and u and v are the x- and y-components of the velocity, respec- 
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tively, into the upper half of an intermediate t-plane to be specified next. 

puted a s  a function of t from 
Once W and < a r e  known as a function of the complex variable t, z can be com- 

Thus, at least in principle, if t is eliminated, W and 5 can be found a s  functions of z. 
This yields the solution of the problem. 

c^H must lie along the line 
!P = constant. Thus, as shown in figure 3, the interior of half the flow field must be map- 
ped into an infinite strip in the W-plane. Now, the t-plane is chosen so that the bound- 
aries of the flow field a r e  as shown in figure 4; that is, the bounding surface of the arc is 

n n  
First consider the W-plane. From the previous discussion, the a rcs  IB, BC, and 

= 0, and the wall streamline must lie along a line 

z \\\\\w h\\\\\\\\\\\\\\\\\\\\\\\\ \ 
I H 

Figure 3. - W-plane. 

H 
5 

H 
-1 0 1 

Figure 4. - 1-Plane. 
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mapped into the interval (-1, 1) on the real axis; the bounding streamlines of the wake 
are mapped into the rest of the real axis, the channel walls are mapped into the portion 
of the imaginary axis above the point I; and the stagnation streamline is mapped into the 
rest of the positive imaginary axis. The point at upstream infinity in the physical z-plane 
is mapped into the point I on the imaginary axis, and the point far downstream in the 
physical plane is mapped into the point at infinity in the t-plane. 

A mapping must be found of the interior of the infinite s t r ip  in the W-plane into the 
first quadrant of the t-plane. To accomplish this maping, note that the transformation 

(10) 
2 T = t  

maps the first quadrant of the t-plane into the upper-half T-plane, as shown in figure 5, 
so that the positive imaginary axis in the t-plane is mapped into the negative real axis in 
the T-plane. Now, map the interior of the infinite strip in the W-plane into the upper- 
half T-plane by the degenerate Schwarz-Christoffel transformation (ref. 3, p. 226) 

Eliminating T between equations (10) and (11) and noting from figure 4 that, at the point 
I in the t-plane, t = ih yield 

dt t2 1 +- 
h2 

Figure 5. - T-plane. 
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To establish the connection between !Po, h, and the physical variables, integrate equa- 
tion (12) to get 

i 

(13) 
W = h 2 9o In (t 2 2  + h ) + constant 

Now, since W(-t*) = W*(t), it is clear from the symmetry of the problem that equa- 
tion (13) gives the correct complex potential for the entire flow field when it is extended 
from the first quadrant of the t-plane to the upper-half t-plane. The imaginary part of 
W can be shown to change by 27rh q0 in passing from the negative to positive side of the 
ima inary axis with Im (t) > h; that is, the change in 9 between the channel walls is 
27rh a0. But this is the total flow through the channel and is therefore equal to V,D, 
where V, is the upstream velocity of the flow. Hence, it follows that 

2 

B 

Equation (12) shows that, in the limit h -L m, 

2 w = 9,t 

which maps the entire W-plane into the upper-half t-plane. This expression is the proper 
transformation of the W-plane into the t-plane for an unbounded flow (channel walls infi- 
nitely far apart). Note that in this case the stagnation streamline maps into the entire 
positive imaginary axis. Hence, at least as far as W is concerned, the limit D -c 

corresponds to the limit h - 03. The next section makes apparent the fact that 5 de- 
pends on h only through dW/dt and so the same conclusion follows for r .  

Calculation of Velocity 

With W specified as a function of the intermediate variable t, < is now found as a 
function of t. This is accomplished by studying the properties of the function 17, defined by 
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The branch of iz is chosen so that the cut lies along the real axis between -1 and 1 
(see ref. 4, p. 82). When t approaches the real axis through values with positive 
imaginary part, 

ill - t2 i 
l P T =  i l t 2  - 

and 

lim q(t + ie) = 
E - O +  

It follows that 

- l < t < l  
1/2 

- P)Tr/2 

+ P)7r/2 

0 < t < 1 

-1 < t < 0 
lim arg  q(t + ic) = 
€-LO 

where the a r c  tangent must lie in the first and second quadrants. Also 

11 



so that a rg  q(t) goes from (1 - P)7r/2 to 7r/2 as t goes from 1 to 03 along the real axis 
and from (1 + /3)7r/2 to 7r/2 as t goes from -1 to -m along the real axis. Note, also, 
that when t = R for X > 0, 

Thus, 

a rg  q(iA) = - 7r x > o  
2 

In fact, lim arg  q(t) = 77/2 everywhere in the upper-half plane, or  
t-- 

isr/2 lim q(t) = e 
t- CcJ 

Now consider <. It is not known yet whether the boundary of the arc has a finite curva- 
ture at the stagnation point B or whether a sharp angle occurs at this point. There is 
no reason to exclude the latter case from consideration. Define 

lim y 3 C 4  - lim y3(st, = psr 
s7--0 on 2 sT--o on G 

that is, p7r is the included angle between the two tangents to the arc surface at the stagna- 
tion point (see fig. 2). 

t = 0, dt/dz - i?'. Because 
A classical result (ref. 4, p. 132) in conformal mapping is that in the vicinity of 

dW - dW dt c = - - - -  
dz dt dz 

it follows, by using equation (12), that 5 - tp in the vicinity of t = 0, which shows that, 
unless the arc has a cusp (p  = 0) at the stagnation point, < vanishes there as e. It is 
also known from the nature of the problem that 0 f 0, a at any other point. Since the 
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velocity in the channel must become uniform far downstream of the arc,  it follows from 
figures 2 and 4 that, in the upper-half t-plane, 

in/2 lim <(t) = Voe 
t--.o 

Equation (15) shows that q(t) - 8 in the vicinity of t = 0 and q(t) # 0, ~0 at any 

The interior of the first quadrant of the t-plane is denoted by I' (i. e., the first quad- 
other point in the upper-half t-plane. Also, equation (19) holds as t - 00. 
rant of the t-plane excluding the positive real and imaginary axes), and the closure of I? 
(that is, the first quadrant of the t-plane including the positive real and imaginary axes) - is dented by T. It is clear that half the flow (that is, the region in I BC HI of fig. 2) is 
mapped into T. 

From the preceding discussion, the function <(t)/Voq(t) for t E 7 is bounded away 
from 0 and 00 in T, is analytic in r, and approaches unity as t - Q) for all t E r. 

Introduce a new function of t, Q = 8 + T (8 and T real) defined by 

L 
Then, Q is analytic in r and bounded, and turns out to be continuous in r (ref. 5, 
Theorem 14.19, p. 281 and Remarks 14.20 C, p. 282). Also, since 

it follows from equations (20) and (2l), that 

limS2(t)=O t€r 
t- C 0  

Also, figures 2 and 4 clearly show that 5 must have the argument n/2 on the positive 
imaginary axis of the t-plane. Since 

it is clear from equation (19), 8 = 0 on the positive imaginary axis; that is, Q is a pure 
imaginary quantity on the positive imaginary axis. 
Reflection (ref. 4, pp. 44 or ref. 5, Theorem 11. 17, p. 230), Q(t) can be extended ana- 

Then, by Schwarz's Principle of 
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I I p 
t 

lytically to a function analytic in the entire upper-half plane (excluding the real axis) by 

Q(-t*) = -Q*(t) (2 4) 

Equations (15) and (24) show that ((t) given by equation (22) then has the proper 
symmetry in the upper-half t-plane to describe the flow depicted in figure 2. Inasmuch 
as the free streamlines bounding the wake are mapped into the portion of the real axis 
outside the interval (-1, 1) (fig. 4), it can be concluded that IS(t) I = Vo for t < -1 and 
t > 1. Equation (22) shows that 

thus, from equation (17a), 

which shows that 

The complex conjugate velocity <(t), given by equation (22) with the symmetry condition 
(eq. (24)) and the conditions of equations (23a) and (26), now satisfies all the specified 
velocity boundary conditions except those on the arc surface corresponding to the interval 
(-1, 1) in the t-plane. Equations (23) and (24) show that 

lim Q(t) = 0 
t-c.. 

along all paths in the upper-half plane. 

the real axis, Q(t) may be expressed everywhere in the upper-half plane in terms of its 
imaginary part on the real axis by using the Schwarz integral formula (ref. 3, p. 251), 
namely, 

Since Q(t) is analytic in the upper-half plane, vanishes at infinity, and is bounded on 
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where 

s = Re (t) 

By use of equation (26), the Schwarz formula becomes 

n(t) =i L1 70 d s  
P s - t  

It is easily seen that the function a, given by equation (28) satisfies equations (23b) and 
(26) and that the condition 

is necessary and sufficient for equation (24) to hold (which also guarantees that SZ be a 
pure imaginary quantity on the positive imaginary axis). 

Observe that <(t), given by equations (22) and (28) with the symmetry condition 
(eq. (29)), satisfies all the boundary conditions on the velocity except the one on the 
boundary of the arc (-1, 1) in the t-plane. 

In order to find O(s) for -1  5 s 5 1 from equation (28), the Plemelj formulas (also 
called Sohkosti formulas) for the limiting value of an analytic function (ref. 6, p. 25) are 
used. Corresponding to equation (28), the Plemelj formula appropriate to the upper-half 
t-plane is 

lim a(t) = O(s) + iT(s) 
t-s+ 

- l < s < l  = iT(s) + P.V. - ds  l 
a s' - s 

where t - s+ indicates that t approaches the real axis through values with positive 
imaginary parts, P. V. shows that the singular integral to the right is to be evaluated in 
the sense of a Cauchy Principal Value, and s' is a dummy variable of integration. Thus,. 
O(s) is given on the interval (-1, 1) in terms of the values of T on this interval by 

e(s) = P. v. - ds - l < s < l  
a s' - s 
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Now, to complete the solution of the problem requires only the determination of T 

on the real interval (-1, l), for which equation (6) is used. 
of length dst  is given by 

First, note that the element 

t where dz is to be taken along the real interval -1 I t I 1 in the t-plane, since s 
maps into this interval. Now, because 

it follows that 

In general, 

and, by definition, 

Using these results in equation (6) gives 

t=s -15 s 5  1 dsl 
The surface of the arc is a streamline (see fig. 2); hence, 
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rr kv-; -1s s < o  

but from equation (22), 

Using equation (16a) yields 

- (1 - P)a/2 0 < s s  1 

- ( 1 + p ) ~ / 2  -1s S < O  

a r g  <-l(s) = 

so that 

v=( 
bo+: - 1 s s < o  

Integrating equation (31) from 0 to s (-1 < s < 1) and noting that Vs is zero at s = 0 
(neglecting here the case of a cusp (P = 0) at the stagnation point) yield 

From equations (16) and (25), 
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. . . . .. . .. I I, 

Substituting equations (12), (32), and (34) into equation (33) gives 

Setting s = 1 in equation (35) and using equation (26) show that 

ds  
v3 22- = $' cos (0 + 5) 2 2  

l + s  /h 6jBiP0 

iminating 6jBQ0 /p< between equations (35) and (36) leads to  E 

ds' 
2 2  1 + (s') /h 

3P 

- ~ o s  s 5  1 (37) 

2 2  l + s  /h 

From equations (29) and (30) or  equivalently from equation (24), 

e(-s) = -e(s) 0 5  s 5  1 

so that f3 is an odd function of s on the interval (-1, 1). In particular, 

e(0) = 0 (39) 
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Equation (39) shows that in the neighborhood of s = 0 

and 

so that, in the neighborhood of s = 0, the right side of equation (37) behaves like s2 for 
P # 1, whereas the left side behaves like s3'. It can be concluded from this that solu- 
tions to equation (37), which are continuous in the neighborhood of s = 0, exist only if 
P = 1 or /3 = 2/3. Thus, the arc surface is either a smooth curve (P = 1) in the neighbor- 
hood of the stagnation point, or else it is pointed with an included angle of 120' (compare 
with 120' wedge solution of ref. 2). Solving equation (37) for T yields 

0 I s I 1; p = 1, 2/3 (40) 

The problem is now essentially solved since the T given by equation (40) for positive s 
can be extended to negative values of s by the symmetry condition (eq. (29)). The re- 
sult can be substituted in equation (30). In this manner, a nonlinear integral equation for 
0 is obtained, and the solution to this equation can be obtained numerically. Equa- 
tions (40) and (29) can be used to calculate T ( S )  for -1 I s I -1. These values of T can 
then be substituted into equation (28) to determine C2 in the upper-half t-plane and, 
therefore, by equation (22) to determine the complex conjugate velocity S(t). Thus, 
knowing W from equation (13) and 5 allows the calculation of all physical quantities, as 
explained in the discussion of equation (9) (see the Calculation of Stream Function sec- 
tion). The substitutions just described do not have to be carried out, since the numerical 
solutions to equations (29), (30), and (40) were  obtained with the equations in the form in 
which they are now written. The solutions for an arc in an unbounded free stream can 
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I 
I 
1 be obtained by letting h - ~0 in equation (40). 

portant physical variables must be developed (the arc shape and the shape of the free 
streamlines), and the relations between the parameter h and the physical quantities of 
interest in the problem must be found. 

Before the results are collected and summarized, the expressions for the most im- 

I 

Boundaries of A r c  and Wake 

Expressions for the shape of the bounding streamlines are obtained first. Notice that - 
the surface of the arc BC in figure 2 is mapped into the interval 0 5 s 5 1 in the 
t-plane. Hence, the position of the arc surface, denoted by zs = xs + iys, is given by 
equation (9) as 

zs = is S-'(s)(z) d s  0 5 s 5 1 
t=s 

where the origin of the coordinate system lies at the stagnation point. Substituting equa- 
tions (12), (16), and (22) into equation (41) yields 

The real and imaginary parts of zs are 

\ l+ d1 - s2/ + sL/h' 

and 
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sin [e - (1 - ~ ) a / z ] e - ~  Ys =- 
(l + yxr 1 + 12/h2 ds 

This last expression can be simplified further. First, differentiate both sides of 
equation (35) with respect to s to get 

e =- cos (e +:) S 

2 2  l + s  /h 

Using this expression to eliminate cos (e + Pn/2) in equation (43) gives 

Ys = -- '"ftc J e 2 T d s  

1 +  1 - s  
2JB 

Denote the longest dimension of the arc in the direction parallel to the flow by d; thus, 
ys = -d at s = 1. From equation (26), ~ ( 1 )  = 0, so that equation (44) shows 

or 

2 1  



which is the equilibrium condition satisfied by the parameters of the magnetically bal- 
anced arc. Using equations (45) and (36) in equation (42) finally leads to 

(1 + ds 
2 2  

cos [ e  - (1 - P)7r/21e-T 
l + s  /h 

s 2  X 
- = -  
d 3  f ' c o s ( t I + F )  2 2  d s  

0 l + s  /h 

0 s  s s  1 (46a) 

and rewriting equation (44) in terms of d yields 

Having obtained a set of parametric equations for the bounding surface of the arc, the 
next step is to obtain an expression for the boundary of the wake. Notice that the bound- 
ing streamline of the wake CH in figure 2 is mapped into the interval s 2 1 in the 
t-plane. Hence, the position of the wake surface defined as zf = xf + iyf is given by 

- 

22 
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Substituting equations (12), (17), (22), and (26) into equation (48) leads to 

The real  and imaginary parts of zf are 

and 

y - -d +?!!! ls sin 1 - (1 - P)n/2 - P tan-' d x  
f -  vO 1 1 + s2/h2 dj 

where 1 is given by equation (46b). Using equations (45) and (36) in equation (49) gives 

- (1 - P)n/2 - 2 tan -'{q ds 
2 2  l + s / h  

s 2 1 (501 2 X L L + -  
d d 3  f 'cos(9 +:) 2 2  ds 

l + s  /h 0 
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(1 - /3)7~/2 - 0 tan" fi d s  
l + s / h  

s z 1 (51) 
Yf 2 1 2 2  
- =  -1 +-  
d 3 

J1 c o s t  + f )  l + s  2 2  /h ds  

Equations (46a) and (47) and equations (50) and (51) give the shape of the arc and wake, 
respectively. 
an unbounded free stream. 

Taking the limit h - 00 in these equations gives the results for an arc in 

P h ys ica I Para meters 

To obtain an expression for V,/Vo in terms of h, note that far upstream of the arc  
< = iv,. In the t-plane, this point corresponds to t = ih, and so equation (22) shows that 

(52) 
iv, = Voq(ih)e is2 (ih) 

but from equation (28), 

a(ih) = -  
s - ih  

2 2  Now equation (29) shows that T(s) / ( s  + h ) is an even function of s, and thus 
S T ( S ) / ( S  + h ) is an odd function of s. The first integral on the right of equation (53) is, 
therefore, zero. Introducing equations (18) and (53) into equation (52) yields 

2 2  
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Equation (54) shows that in the limit h - 00, Vo = V,. 
arc, the velocity far upstream must be equal to the velocity on the boundary streamline 
of the wake (or the velocity far downstream), which could have been anticipated before- 
hand from known results about unbounded flows. 
d can be related to the channel width D by first eliminating 9, between equations (14) 
and (36) to yield 

Thus, in the case of an unbounded 

The characteristic dimension of the arc 

ds  
2 2  l + s  /h 3jBV,D 

Using equation (45) gives 

d s  
2 2  l + s  /h 

or, with Vm/Vo eliminated by equation (54), 

which again shows that D - 00 when h - 00. 
The cross-sectional area A of the a r c  is given by 

l/d 
A = - 2 l  I? ys dx, = -2d2 y6 (,)de) 

Substituting equations (46a) and (47) into the expression for A results in 
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1-0 
ds  

COS [ e  - (1 - P)a/2]e T ( l - d Z ) @  l + s / h  2 2  
. .  

4 2  
3 

A = - d  

$..s(e +:) 2 2  ds  
l + s  /h 

and equation (46b) is used to get 

Combining equation (56) with equations (45) and (54) yields the drag coefficient 

IB 

1 

e 

where J= jA is the total current in the arc. 

Summary  of Calculated Quanti t ies 

For convenience, the results are now collected. If = 1, the boundary of the a r c  is 
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smooth at the stagnation point; if P = 2/3, the boundary of the arc is pointed with 120' 
included angle between the sides of the arc at the stagnation point. The parameter P 
cannot have any other values. The following is a summary of the final results: 

- 
J s  COS (9 + f )  ' 2 2  ds 

- $'cos(Q+$) l + s  2 2  /h ds 

1 l + s  /h 

3P 

0 I s I 1; P = 1, 2/3 (40) 

T ( - S )  = T ( S )  (2 9) 

Equations (45) and (54) yield 

d 3  -=- 

277h2 

1 
'('1 ds  

d s  (55) 
l+s2/h2 

2 2  l + s  /h 
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d 3  
$'cos(. +$) 2 2  ds  

l + s  /h 

Taking the real part of equation (28) results in 

O(s) = A  A 1 z d s v  s >  1, s < - 1  
7 1 -  

(59) 

S 

cos [ e  - (1 - P ) T / ~ I ~ - '  
2 2  l + s  /h 

2 2  X s . _ _ _  
d 3  

- - Os SI 1 (46a) 

2 2  l + s  /h 

- (1 - @)n/2 - p tan" fz ds 1 l + s  2 2  /h 

J'cos(9 +:) ds 2 2  

- = - + -  
d d 3  

l + s  /h 

s I 1 (50) 
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- (1 - P)a/2 - P tan-' d r g  ds  
l + s  2 2  /h 

- s I 1 (51) 

 COS(^'+^) ds 

- = - I + -  Yf 
d 3 

l + s  2 2  /h 

Finally, the drag coefficient , / B / ( p e  /2)(22) is 

- 

e 

2 
ah 
- R' 

COS [e - (1 - @a/:  

X 

COS [e - (1 - P)n/2 JL 

ds 

1-P 
d s  

2 2  
leT(1- s 

l + s  /h 
(57) 

1-P 
ds  

n n  ' 1 + s'/h' \ 

NUMERICAL PROCEDURE 

Equations (30) and (40) were solved numerically with P = 2/3 for various values of 
h (including h = m) and with P = 1 for h = m. These equations were solved by iteration. 
First, 0 was guessed as e(s) 0: s and substituted into equation (40) to calculate T ( s ) .  

This T ( S )  was used in equation (30) to calculate a new O(s) which was  then used in equa- 
tion (40) to calculate new values of T(s).  The procedure was repeated until convergence 
was obtained. In the application of this iteration procedure, certain special techniques 
had to be used. First, the numerical integration scheme used with equation (30) had to 
be tailored to take the principal value of the integral; that is, it had to be set up so that 
the singularities on both sides of the point s' = s cancelled one another in the principal- 
value sense. Second, if any small bumps developed in the curve T against s during the 
course of the iteration process, it was necessary to smooth these out before the values of 
7 were substituted into equation (30) to calculate new values of 8 .  This smoothing out 
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was done because the singularity in equation (30) would tend to make these small bumps 
grow and thus lead to an unstable iteration process. Finally, it was necessary to use an 
averaged iteration procedure with respect to a weight factor E (ref. 4, p. 216); that is, 
instead of equation (30) being used directly in the iteration processes, it was necessary 
to rewrite it in the form 

e(s) = &(s) + (1 - E)P. v. - L ' E d s '  
IT 

so that, if e(") and T@) are the values of 0 and T obtained in the nth step of the iter- 
ation process, the n + 1 step value of 8 is obtained from 

J- 1 

When these techniques were used, the iteration process converged to three significant 
figures in less than 10 iterations with E = 0. 5. 

RESULTS AND DISCUSSION 

The analysis shows that there are two possible solutions to the problem of determin- 
ing the shape of an a r c  with the model used for the internal structure. One of these arcs 
has a sharp leading edge (figs. 6 and 7) with a 120' included angle, and the other has a 
blunt leading edge (fig. 8). The solution for the arc with the sharp leading edge (with the 
channel walls separated by six or more arc widths, which corresponds to the experimen- 
tal conditions) predicts an arc width-thickness (in the direction of flow) ratio of about 2 
and a value of the experimentally observed parameter J B / ( p e  /2)(21) between 0.6 and 
0.8 (fig. 9). These results are in agreement with the experimental results of Roman 
and Myers (except those results at the lower velocities) (ref. 1) and the results of Myers 
(ref. 7). The dimensionless parameters shown in figure 9 are uniquely related to the dis- 
tance h in the t-plane (fig. 4) according to the relations listed in the section Summary 
of Calculated Quantities. In particular, the parameter h determines the shape of the 
arc. Even for an infinite stream ('h = m), a change in the stream velocity alone, for ex- 
ample, does not alter the shape of the arc because the magnetic field or current must be 
adjusted to maintain stability. 

The arc with the blunt leading edge (P = 1) had too large a width-thickness ratio to 
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Figure 6. - Shape of arc wi th sharp leading edge in inf in i te stream. Distance between 
stagnation point and point at upstream in f in i ty  in t-plane, m; channel width, 00; 

included angle between two tangents to arc surface at stagnation point divided by ?I, 
213. 

i -3.2 

Yld 
Figure 7. - Shape of arc and wake with sharp leading edge. Distance between stagnation 

point and point at upstream in f in i ty  in t-plane, 1; channel width, 5.88; included 
angle between two tangents to arc surface at stagnation point divided by ?I, 213. 
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Figure 8. - Shape of arc wi th b lun t  leading edge in inf in i te stream. Distance between stagnation point and point at 
upstream inf in i ty in t-plane, 03; channel width, m; included angle between two tangents to a rc  surface at 
stagnation point divided by ?I, 1. 

Rat% of channel width to arc width, D/2Z 

Figure 9. - Width-thickness ratio and drag coefficient for arc wi th sharp leading 
edge as funct ion of ratio of channel width to arc width. Included angle between 
two tangents to arc surface at stagnation point divided by T ,  2l3. 
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Figure 10. - Width-thickness ratio and dimensionless 
ponderomotive force as function of channel size for 
arc with blunt leading edge. Included angle between 
two tangents, to arc surface at stagnation point 
divided by n, 1. 

agree with the experiments. The geometric and dynamic parameters for this type of arc 
are shown in figure 18. The actual bluntness observed in experiments must be attributed 
to transport effects such as viscosity. The model also predicts the broad wake region 
observed experimentally. At this stage, it is not as yet possible to make any more com- 
parisons with the experimental results. 

The techniques developed herein can be used easily with more general models of the 
internal structure of the arc to obtain more accurate results. 

~ 

CONCLUSION 

A previous analysis of the shape of a magnetically balanced arc was improved by 
giving a more accurate description of the external flow field. Two possible solutions 
were obtained for the model used. One solution was in good agreement with experimental 
results whereas the other was not. The model used for the internal structure of the arc 
is expected to be most accurate at the higher flow velocities. 
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Y j 1 The techniques developed in this report can be used easily with more general models 
of the internal structure of the arc to obtain more accurate results. 

\ , 
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